Как работает сенсорный экран смартфона?

Как на самом деле работает сенсорный экран вашего смартфона?

Если вы интересовались тем, как работает сенсорный экран, то, скорее всего, натыкались на одну из этих статей «для радиолюбителей». Все они написаны, как под копирку и звучат примерно так: когда вы прикасаетесь пальцем к экрану, в определенной точке изменяется емкость условного конденсатора, которую и регистрируют специальные датчики.

Меня всегда удивляли такие объяснения. От того, что кто-то заменил слова «сенсорный экран» словами «емкость конденсатора», мне никогда не становилось легче. Неужели все эти «техноблогеры» в прошлом были электриками? Почему бы не объяснить такую интересную технологию простыми словами, чтобы все было понятно?

Затем я вижу новость, мол, Apple представила iPhone X с экраном 120 Гц, только это не частота обновления картинки (как на Galaxy S20), а частота какого-то опроса сенсора. Естественно, я иду в интернет за ответами и вижу однотипные объяснения: сенсор экрана iPhone X обрабатывает движение пальцев в 2 раза быстрее, то есть, считывание происходит не за 16, а за 8 миллисекунд!

Ага, вроде теперь все стало на свои места. Правда, не совсем понятно, какое еще считывание, что значит «обрабатывать движение пальцев в 2 раза быстрее» и почему процессор может обрабатывать миллиарды операций в секунду, но движение пальцев — только 60 или 120 раз в секунду?

В общем, эта статья будет другой. После ее прочтения у вас не останется неприятного «послевкусия» и вы действительно будете понимать, как все это работает и при чем здесь 120 Гц.

Принцип работы сенсорного экрана — настоящая драма на кончиках пальцев!

Итак, прежде всего, важно понять, что сам по себе экран смартфона совершенно бесчувственный. Чем бы и как бы мы ни прикасались к нему — никакой реакции не последует. Ведь это простой набор из нескольких миллионов крошечных цветных лампочек, которые смартфон использует для отображения картинки.

Чтобы получить какую-то реакцию на прикосновение, нужно где-то дополнительно разместить специальный «чувствительный слой». Но как он выглядит и как именно работает?

Давайте представим, что нам нужно сделать только одну небольшую точку на экране чувствительной к прикосновению. Для этого мы разместим над этой точкой две маленькие пластинки — оранжевую и синюю.

На одну пластинку мы будем подавать ток, то есть загонять туда большое количество электронов (отрицательно заряженных частичек):

Природа всегда стремится к равновесию, то есть, внутри пластинки или чего-угодно (например, наших пальцев) количество положительных и отрицательных зарядов должно быть примерно одинаковым.

Однако же на оранжевой пластинке произошел переизбыток электронов (отрицательно заряженных частичек), которые мы силой туда затолкнули, взяв их из батарейки смартфона. Они пытаются оттолкнуться друг от друга и присоединиться к положительно заряженным частичкам, но не могут.

Дело в том, что эти две пластинки мы предварительно изолировали друг от друга, чтобы свободные электроны не смогли просто перепрыгнуть на голубую пластинку, где их с нетерпением ожидают положительно заряженные частицы. Электрическое поле оранжевой пластинки продолжает отталкивать все «минусы» и притягивать «плюсы», которых уже достаточно много собралось на синей пластине.

Что же произойдет, если мы прикоснемся к этим пластинкам любым проводящим ток предметом, например, своим пальцем?

Электрическое поле оранжевой пластины моментально начнет действовать и на наш палец, частично «переключив внимание» с положительных зарядов синей области на положительные заряды внутри нашего пальца:

Ведь синяя пластинка уже под завязку набита положительно заряженными частицами и это «давление» слишком высоко, а на пальце никакого «давления» нет — там свободно себе «плавают» как положительные, так и отрицательные заряды. Естественно, все это приведет к тому, что положительно заряженных частиц на синей пластинке станет меньше, так как влияние оранжевой пластинки снизилось и переключилось на палец.

Вот, в принципе, и все! Нам лишь осталось измерить эти заряды на пластинке и мы сразу поймем, что возле них появился лишний предмет — кто-то прикоснулся к экрану.

Чтобы весь экран стал чувствительным, нужно полностью перекрыть его этими пластинками: вначале первый слой, на который мы будем подавать ток, затем второй изолирующий слой и после — третий, на котором будем замерять изменение заряда:

Несмотря на то, что все эти слои находятся прямо у вас перед глазами и перекрывают изображение, вы их не увидите, так как все они сделаны из полностью прозрачных материалов. Например, в качестве изоляции может использоваться стекло, а сеточки токопроводящих пластин делают из оксида индия-олова. В низкокачественных экранах эту сеточку увидеть, все же, вполне реально, если посмотреть на выключенный экран под углом на ярком солнце.

Что такое частота опроса сенсора. Или откуда в iPhone 120 Гц?

На картинке выше я схематически показал сеточки из токопроводящего материала, но, естественно, с размером я немножко промахнулся. Кроме того, я не рассказал об одной важной вещи. Все оранжевые пластинки соединены в линии (строки), а голубые — в столбики. То есть, в реальности все выглядит примерно так:

Зачем это делать? Понятное дело, что на экране сенсорный слой состоит не из 3 строк и 3 столбиков, а, например, из 80 строк и 40 столбиков, то есть, всего 3200 пересечений, на которых мы и анализируем электрическое поле. Представляете, какую нужно сделать схему, чтобы подключить каждый такой электрод к своему питанию, чтобы мы могли анализировать 3200 областей на экране?

Вместо этого мы просто подаем напряжение сразу на всю строку и на весь столбик. То есть, подключаем только строки и столбики, после чего наша схема выглядит примерно так:

Но теперь возникает просто колоссальная проблема! Мы включаем напряжение на первый слой, чтобы вокруг каждого пересечения создавалось электрическое поле и начинаем непрерывно отслеживать изменение электрического поля в каждом столбце. Еще раз напоминаю, все электроды (пластинки) соединены теперь в один столбик.

Когда мы касаемся какой-то определенной точки, система моментально фиксирует изменение напряжения не в конкретной точке, а в целом столбике (на картинке — это 7 столбец):

Получается, экран лишь понимает, что в длинной полоске произошло касание, но где именно — без понятия, ведь мы не анализируем каждое конкретное пересечение электродов, а подключаем все их столбцами и строками.

Можно ли как-то решить эту проблему? Да запросто! Давайте просто перестанем подавать напряжение на всю сетку (весь экран) и будем «заталкивать» свободные электроны только в первую строку из токопроводящих пластинок. В результате электрическое поле будет создано только вдоль одной единственной строки.

Теперь, когда «сработает» 7-й столбец, мы будем точно знать, что точка касания находится на пересечении первой строки и седьмого столбца. Почему так? Да потому, что во всех остальных строках вообще не было никакого электрического поля, мы же ток подавали только на первую строку.

Действительно, это решает проблему для первой строки. Но как быть с остальными? Точно так же! Подаем напряжение только на первую строку и замеряем все столбцы, отключаем ток на первой строке и подаем напряжение на вторую строку. Столбцы, при этом, замеряют изменение непрерывно. Таким образом, мы просто поочередно включаем каждую строку и проверяем столбцы. После того, как дойдем до последней строки, переходим снова к первой.

Конечно же, электроника строит «карту прикосновений», чтобы получить полную картинку, где были расположены пальцы на экране по всем строкам. Ведь, палец — это не тонкое перо, он всегда захватывает большую область, то есть, изменяет электрическое поле (и емкость) сразу в нескольких пересечениях. Поэтому, запоминаются значения напряжения для каждой строки.

Один такой цикл прохода от первой до последней строки — это 1 Гц. Если бы «частота опроса сенсора» равнялась одному герцу, управлять таким экраном было бы крайне тяжело, особенно это касается жестов (движения пальца по экрану) или мультитача (одновременного касания нескольких пальцев).

Для этого мы немножко ускоряемся и весь цикл от первой до последней строки проходит за 16 миллисекунд, то есть, за 1 секунду мы получим 60 проходов (поочередной подачи напряжения от первой до последней строки и считывании напряжения на столбцах).

Нужно ли пробегаться по всем строкам еще быстрее — вопрос интересный. К примеру, картинка на экране iPhone 11 меняется каждые 16 миллисекунд (то есть, частота обновления экрана составляет 60 Гц). При этом, сенсорный слой за это же время успевает пройтись построчно по всему экрану дважды. Зачем? Без понятия. Наверное, чтобы во время презентации (или в технических характеристиках) упомянуть о «120 герцах» и, тем самым, «невольно» ввести неподкованного пользователя в заблуждение.

Интересные моменты

Сенсорный слой (то есть, те самые сетки из токопроводящих пластин и изолятора между ними) раньше всегда находился с обратной стороны защитного стекла. То есть, пользователь прикасался к стеклу, на обратной стороне которого и создавалось электрическое поле. В бюджетных моделях примерно так все и осталось.

Затем производители стали думать, куда бы убрать сенсорный слой в своих флагманах, чтобы сократить толщину экрана и сделать его более прозрачным (а значит и ярким). Так появился Super AMOLED-экран от Samsung, который отличался от любого другого OLED-дисплея только расположением сенсорного слоя — внутри дисплейного модуля, а не на защитном стекле.

Дело в том, что любой экран представляет из себя «бутерброд» из нескольких слоев. В частности, для OLED-экрана это TFT-слой управляющих транзисторов, слой органических диодов, поляризационная пленка и пр. Так вот, «сенсорный слой» на Super AMOLED находится внутри «бутерброда», сразу под поляризационной пленкой.

Apple также размещает в некоторых iPhone этот слой внутри дисплея. Если мне не изменяет память — сразу над цветными фильтрами их IPS-экранов.

Как вы уже поняли, сенсорный экран реагирует на любой предмет, способный проводить электричество: от тонкого металлического провода до капельки воды. Если какой-то предмет не проводит ток, он не вступит во взаимодействие с электрическим полем сенсорного слоя.

Вода является одним из главных врагов сенсорных экранов, так как, будучи прекрасным проводником электричества, вносит очень много «шума» в сигнал. И смартфону становится тяжело точно отличить «прикосновения» воды от реальных касаний. Сравните, насколько похожи эти сигналы:

Когда мы прикасаемся пальцем к экрану, меняется напряжение сразу во многих точках, причем, в самом центре касания, где контакт максимален — сильнее, чуть дальше — слабее. Это можно изобразить схематически примерно так:

То есть, смартфон не просто «чувствует» касание, но и «видит» форму этого касания. Соответственно, он пытается реагировать только на тот предмет, который оставляет характерный «след» от пальца. Из-за этого сенсорные экраны и не реагируют на некоторые токопроводящие предметы, например, стилусы с очень тонким наконечником.

К слову, перо S Pen на смартфонах Galaxy Note вообще не имеет никакого отношения к сенсорному слою и электрическому полю, там используется радиосвязь, о чем я подробно рассказывал в этой статье.

Алексей, глав. редактор Deep-Review

Сенсорные экраны: принцип работы тачскринов

Сначала тачскрины (сенсорные экраны) встречались достаточно редко. Их возможно было найти, только лишь в некоторых КПК, PDA (карманных компьютерах). Как известно, устройства такого плана так и не обрели широкого распространения, так как им не хватило самого важного, то есть, функциональности. История смартфонов напрямую связана с тачскринами. Именно поэтому в нынешнее время человека с «умным телефоном» сенсорным экраном сейчас не удивишь. Тачскрин получил широкое применение не только в модных дорогостоящих девайсах, но, даже, в относительно недорогих моделях современных телефонов. В чём же заключаются принципы работы 3-х типов сенсорных экранов, которые возможно встретить в современных устройствах.

Типы тачскринов

Сенсорные экраны уже не являются слишком дорогими. Кроме этого, тачскрины (touchscreen) сегодня намного «отзывчивее» — касания пользователя распознают просто превосходно. Именно эта характеристика проложила им дорогу к большому числу пользователей во всем мире. В нынешнее время существуют три основные конструкции тачскринов:

  1. Ёмкостные.
  2. Волновые.
  3. Резистивные или попросту «упругие».

Ёмкостный тачскрин: принцип работы

В тачскринах конструкции такого рода стеклянную основу покрывают слоем, который выполняет роль вместилища-накопителя заряда. Пользователь своим касанием высвобождает в определённой точке часть электрического заряда. Данное уменьшение определяется микросхемами, которые расположены в каждом углу экрана. Компьютером вычисляется разница электрических потенциалов, существующих между разными частями экрана, при этом, информация о касании в подробностях передаётся немедленно в программу-драйвер тачскрина.

Довольно важное преимущество ёмкостных тачскринов — это способность данного типа экранов сохранять практически 90 % от изначальной яркости дисплея. Из-за этого изображения на ёмкостном экране смотрятся более чёткими, чем на тачскринах, имеющих резистивную конструкцию.

Видео про ёмкостный сенсорный экран:

Будущее: волновые сенсорные дисплеи

На концах осей координатной сетки экрана из стекла располагается два преобразователя. Один из них является передающим, второй — принимающим. На стеклянной основе имеются и рефлекторы, «отражающие» электрический сигнал, который передаётся от одного к другому преобразователю.

Преобразователь-приёмник стопроцентно точно «знает» было ли нажатие, а также в какой конкретно точке оно произошло, так как пользователь своим касанием прерывает акустическую волну. При этом, стекло волнового дисплея не имеет металлического покрытия — это предоставляет возможность сохранить в полном объёме 100 % изначального света. В связи с этим, волновой экран представляет собой наилучший вариант для тех пользователей, которые работают в графике с мелкими деталями, потому, что резистивные и ёмкостные тачскрины не являются идеальными в вопросе чёткости изображений. Их покрытие задерживает свет, что в результате существенно искажает картинку.

Видео про принцип работы сенсорных экранов на ПАВ:

Прошлое: о резистивном тачскрине

Резистивная система — это обычное стекло, которое покрыто слоем проводника электричества, а также упругой металлической «плёнкой», также обладающей токопроводящими качествами. Между этими 2-мя слоями с помощью специальных распорок есть пустое пространство. Поверхность экрана покрыта специальным материалом, который обеспечивает ему защиту от механических повреждений, например, царапин.

Электрический заряд в процессе работы пользователя с тачскрином, проходит через два эти слоя. Каким же образом это происходит? Пользователь в определённой точке касается экрана и упругий верхний слой соприкасается с проводниковым слоем — только в этой точке. Потом компьютером определяются координаты той точки, которой пользователь коснулся.

Когда координаты становятся известны устройству, то специальный драйвер переводит прикосновения в команды, известные операционной системе. В данном случае можно провести аналоги с драйвером самой обычной компьютерной мышки, ведь он занимается точно тем же: объясняет операционной системе то, что конкретно хотел сказать ей пользователь посредством перемещения манипулятора или же нажатия кнопки. С экранами данного типа используют, как правило, специальные стилусы.

Резистивные экраны возможно обнаружить в относительно немолодых устройствах. Как раз таким сенсорным дисплеем оборудован IBM Simon — самый древний смартфон из тех, что были сознаны нашей цивилизацией.

Видео про принцип работы резистивного сенсорного экрана:

Особенности различных типов тачскринов

Наиболее дешёвыми сенсорными экранами, но, при этом, наименее чётко транслирующими изображение являются резистивные тачскрины. Кроме этого, они являются и самыми уязвимыми, ведь абсолютно любым острым предметом возможно серьёзно повредить достаточно нежную резистивную «плёночку».

Следующий тип, т.е. волновые тачскрины, представляют собой самые дорогостоящими среди себе подобных. При этом, резистивная конструкция, вероятнее всего, относится, всё-таки, к прошлому, ёмкостная — к настоящему, а волновая — к будущему. Понятное дело, что грядущее абсолютно никому стопроцентно не известно и, соответственно, в нынешнее время можно только лишь предполагать, какая именно технология имеет большие перспективы для использования её в будущем.

Для резистивной системы тачскринов не имеет никакого особого значения, коснулся резиновым наконечником стилуса или же просто пальцем пользователь экрана устройства. Достаточно того, что между двумя слоями произошло соприкосновение. При этом, ёмкостной экран распознает только лишь касания какими-то токопроводящими предметами. Зачастую пользователи современных устройств работают с ними с помощью собственных пальцев. Экраны волновой конструкции в этом отношении ближе к резистивным. Отдать команду возможно практически любым предметом — при этом нужно только избегать использования тяжёлых или же слишком маленьких объектов, например, стержень шариковой ручки для этого не подойдёт.

Что такое тачскрин на телефоне или смартфоне

При обсуждении мобильных телефонов, смартфонов или планшетов можно услышать такое слово как тачскрин. Из контекста можно понять, что тачскрин как-то связан с экраном устройства, но что это за деталь и какие функции она выполняет знают далеко не все. В данной статье мы расскажем, что такое тачскрин на телефоне или смартфоне, для чего он нужен и как работает.

Что такое тачскрин

Тачскрин или сенсорный экран – это устройство, которое позволяет вводить в компьютер информацию касаясь его экрана с помощью специального пера (стилуса) или просто с помощью пальцев. Данная технология позволяет отказаться от использования дополнительных аппаратных кнопок, что повышает удобство работы и может снизить стоимость всего устройства.

Данный способ ввода информации был изобретен в США в 70-х годах прошлого столетия. Первым компьютером с тачскрином стала появившаяся в 1972 году система PLATO IV. Тот тачскрин работал на основе сетки инфракрасных лучей. Примерно в то же время Сэмюэлем Херстом был разработан первый сенсорный экран, работающий на основе резистивной технологии. А в 1982-году появился первый телевизор с резистивным сенсорным экраном.

Технология изготовления сенсорных экранов развивалась и в начале нулевых годов она начала активно использоваться в производстве мобильных устройств. Сначала появились карманные компьютеры с тачскрином, а потом, телефоны, смартфоны и планшеты. Применение тачскрина позволило значительно расширить возможности мобильных устройств, что стало толчком к значительному росту этой отрасли.

Сейчас тачскрин используется повсеместно, его встраивают в телефоны, смартфоны, планшеты, ноутбуки, моноблоки, мониторы. Также сенсорные экраны активно применяются в автомобильной, медицинской, промышленной и бытовой технике. Фактически, любое устройство, требующее ввода информации, может быть оснащено таким экраном.

Как устроен тачскрин

Существует несколько технологий производства сенсорных экранов, которые основаны на совершенно разных принципах. Одним из наиболее старых и распространенных вариантов является резистивная технология.

Резистивный сенсорный экран состоит из мягкой пластиковой поверхности и стеклянной панели, на которые нанесено специальное резистивное покрытие. При нажатии на экран верхняя мягкая поверхности касается стеклянной панели и электрическая цепь замыкается. Этот контакт позволяет измерить сопротивление и определить точку, в которой две поверхности были соединены.

Принцип работы резистивного сенсорного экрана.

В прошлом резистивные экраны были основной технологией производства тачскринов. В частности, их применяли и в мобильных устройствах (КПК, телефоны и смартфоны). Но, из-за низкой надежности и плохого пропускания света сейчас они все больше вытесняются емкостными сенсорными экранами.

Емкостный сенсорный экран основан на том, что при касании экрана пальцем происходит утечка тока. Данную утечку можно измерить и определить точку, где эта утечка произошла. Конструкция емкостного тачскрина состоит из стеклянной панели, которая покрыта специальным резистивным слоем. По углам экрана прикреплены электроды, они подают на экран небольшое напряжение. В момент касания экрана появляется утечка тока, которая фиксируется во всех четырех углах стеклянной панели. Полученная информация передается в контроллер, который определяет координаты утечки.

Принцип работы емкостного сенсорного экрана.

За счет более простой конструкции ёмкостные тачскрины намного надежней. Они могут выдерживать до 200 млн нажатий (против 35 млн. у резистивных моделей), чего более чем достаточно для любого устройства. Также емкостный тачскрин позволяет обеспечить более качественное изображение, что особенно актуально для телефонов и смартфонов, которые часто используются для фотографирования и просмотра снимков.

Благодаря этим преимуществам емкостная технология сейчас преобладает. 100% всех мобильных устройств используют емкостную технологию тачскрина. В мониторах, ноутбуках и моноблоках также используется преимущественно емкостный тачскрин. На данный момент, резистивные экраны можно встретить только в медицинском и промышленном оборудовании, а также в терминалах самообслуживания.

Тачскрин и его поломки

Как уже было сказано, емкостный тачскрин, который применяется в телефонах и смартфонах, достаточно надежен. Поэтому при правильной эксплуатации он прослужит столько, сколько нужно. Но, из-за того, что он построен на основе стеклянной панели, он достаточно уязвим перед ударами. Даже небольшой удар может вызвать появление трещины, которая выведет сенсорный экран из строя.

Тачскрин от телефона Samsung.

В такой ситуации поможет только замена тачскрина. В старых моделях телефонов данную деталь можно было поменять оставив старый экран. Это позволяло сделать замену достаточно простой и не затратной. Но, сейчас тачскрин чаще всего является частью самого экрана и отдельно заменить его невозможно, что значительно удорожает ремонт.

Чтобы избежать подобных расходов можно заблаговременно защитить свой телефон. Для этого поверх тачскрина нужно наклеить защитное стекло. Такое стекло никак не ухудшает работу сенсорной панели, но может спасти ее в случае падения устройства.

10 способов заставить сенсор снова работать

Выросло поколение, которое всерьез считает, что телефоны с сенсорным дисплеем ведут свое начало от iPhone. Не будем оспаривать грандиозное влияние «яблочного» девайса на мобильную индустрию, но все же восстановим справедливость — сенсорные аппараты появились задолго до рождения первого смартфона Apple.

  1. Разновидности тачскрина
  2. Мир становится цифровым, и все больше и больше наших ежедневных действий оцифровывается.
  3. Мультитач (Multi-touch)
  4. Резистивный сенсорный экран
  5. Плюсы:
  6. Минусы:
  7. Как устроен тачскрин
  8. Как сохранить данные при неработающем дисплее
  9. Broken Android Data Extraction
  10. Инструкция
  11. Тачскрин и дисплей: в чём разница

Разновидности тачскрина

На заре появления сенсорного экрана в смартфонах, около десяти лет назад, эта технология еще только начинала свое активное развитие (как и сами смартфоны) и существенно отличалась от уже знакомой нам, сегодня. Сила нажатия на экран должна была быть больше, точность была ниже, а о мультитаче речи вообще не шло; но были и плюсы – нажимать на экран можно было чем угодно, хоть веткой, оторванной с дерева, вместо стилуса. Этот тип экрана назывался резистивным и мог распознать лишь одно нажатие на его поверхность.

В то время это был значительный прорыв и даже такого типа экраны очень впечатляли тогдашних владельцев смартфонов. Возможность прямо на экране ткнуть пальцем и выбрать какое-то действие приравнивалось к сюжету фантастического фильма, с ультрасовременной техникой «из будущего». Сегодня же с таким функционалом большинство пользователей, скорее всего, просто разобьют телефон об стену, потому как современные приложения уже даже не проектируются с учетом одного нажатия. И как только речь заходит об увеличении любой фотографии, особенно там, где двойной клик играет совсем другую роль, вы сталкиваетесь с проблемой – взять хотя бы Instangam.

Однако, тачскрин стремительно развивался и даже резистивный экран научился понимать несколько нажатий, появились разновидности сенсорных панелей, с которыми экспериментировали производители. Таким образом, каждый привнес что-то полезное в процесс улучшения сенсорной поверхности и сегодня мы можем видеть совершенно новый, чувствительный, надежный и поддерживающий множество касаний экран.

Мир становится цифровым, и все больше и больше наших ежедневных действий оцифровывается.

Одной из технологий, облегчающих этот переход, является технология сенсорного экрана. Большинство из нас знакомы с ней. В конце концов, если у вас есть смартфон, то вы взаимодействуете с сенсорным экраном ежедневно.

Полезность и практичность технологии сенсорного экрана неоспорима. И на самом деле настолько, что предприятия осознали преимущества внедрения этой технологии. Однако, несмотря на его простоту для конечных пользователей, в этой технологии есть нечто большее, чем кажется на первый взгляд.

Вначале мы рассмотрим, почему стоит инвестировать в технологию сенсорных мониторов, и обсудим потенциал мониторов с сенсорными экранами для вашей компании. Чтобы понять этот потенциал, нам нужно погрузиться в различные типы сенсорных технологий.

Мультитач (Multi-touch)

Мультитач, о котором все так много говорят и популярность которого только растет, не является типом сенсорного экрана. По своей сути, технология множественного нажатия – что является вольным переводом словосочетания multi-touch – это дополнение к сенсорному экрану (чаще всего построенному по проекционно-ёмкостному принципу), позволяющее экрану распознавать несколько точек прикосновения к нему. В результате мультитач-экран становится способным к распознаванию жестов. Вот лишь некоторые из них:

  • Сдвинуть два пальца вместе – уменьшение изображения (текста)
  • Раздвинуть два пальца в стороны – увеличение (Zoom)
  • Движение несколькими пальцами одновременно – прокрутка текста, страницы в браузере
  • Вращение двумя пальцами на экране – поворот изображения (экрана)

Резистивный сенсорный экран

Самый простой и доступный вид тачскрина. Раньше использовался во всех телефонах, смартфонах, планшетах и кпк, поддерживавших эту функцию. Сейчас применяется редко.

Состоит из стеклянной панели, мягкой пластиковой панели и специального резистивного слоя между ними. Пользователь надавливает на экран, пластиковая панель продавливается до стекла и замыкает электрическую цепь. Это нажатие фиксируется и обрабатывается устройством.

Плюсы:

  • низкая стоимость;
  • тачскрин реагирует не только на пальцы, но и любой предмет;
  • легкое управление.

Минусы:

  • хрупкость – очень быстро появляются царапины и сколы;
  • неустойчивость к перепадам температуры;
  • недолговечность – панель выдержит до 34 млн. нажатий;
  • нет функций мультитача и скольжения – на экран надо именно нажимать, а не касаться.

Как устроен тачскрин

Существует несколько технологий производства сенсорных экранов, которые основаны на совершенно разных принципах. Одним из наиболее старых и распространенных вариантов является резистивная технология.

Резистивный сенсорный экран состоит из мягкой пластиковой поверхности и стеклянной панели, на которые нанесено специальное резистивное покрытие. При нажатии на экран верхняя мягкая поверхности касается стеклянной панели и электрическая цепь замыкается. Этот контакт позволяет измерить сопротивление и определить точку, в которой две поверхности были соединены.

Принцип работы резистивного сенсорного экрана.

В прошлом резистивные экраны были основной технологией производства тачскринов. В частности, их применяли и в мобильных устройствах (КПК, телефоны и смартфоны). Но, из-за низкой надежности и плохого пропускания света сейчас они все больше вытесняются емкостными сенсорными экранами.

Емкостный сенсорный экран основан на том, что при касании экрана пальцем происходит утечка тока. Данную утечку можно измерить и определить точку, где эта утечка произошла. Конструкция емкостного тачскрина состоит из стеклянной панели, которая покрыта специальным резистивным слоем. По углам экрана прикреплены электроды, они подают на экран небольшое напряжение. В момент касания экрана появляется утечка тока, которая фиксируется во всех четырех углах стеклянной панели. Полученная информация передается в контроллер, который определяет координаты утечки.

Принцип работы емкостного сенсорного экрана.

За счет более простой конструкции ёмкостные тачскрины намного надежней. Они могут выдерживать до 200 млн нажатий (против 35 млн. у резистивных моделей), чего более чем достаточно для любого устройства. Также емкостный тачскрин позволяет обеспечить более качественное изображение, что особенно актуально для телефонов и смартфонов, которые часто используются для фотографирования и просмотра снимков.

Как сохранить данные при неработающем дисплее

Если экран смартфона перестал работать окончательно и вы хотите сохранить файлы, имеющиеся на телефоне, Вам придётся использовать обычный ПК и специальную программу.

Broken Android Data Extraction

iSkysoft разработали программу, которая позволяет сохранить или восстановить необходимую информацию со сломанных телефонов. Для этого установите приложение Android Data Extraction на компьютер и следуйте инструкции.

Инструкция

  1. Подключите смартфон к компьютеру при помощи провода.
  2. Откройте программу, раздел «Извлечение данных» (Поврежденные устройства).
  3. Выберите тип файла для восстановления.
  4. Укажите текущее состояние смартфона: а) «Сенсор не работает»; б) «Чёрный/сломанный дисплей».
  5. Введите название смартфона и модель. Затем нажмите «Следующее» и «Подтвердить».
  6. Отключите смартфон.
  7. Продолжите процесс сохранения данных на компьютере.

Сенсорный экран современных смартфонов довольно хрупкий, поэтому в его работе легко может произойти сбой. Вы всегда можете попробовать восстановить работу тачскрина самостоятельно или сдать его в ремонт, если поломка окажется сложной.

Тачскрин и дисплей: в чём разница

Разница этих двух деталей заключается в выполняемых функциях. Дисплей – это часть смартфона, которая необходима для вывода изображения и информации.

Всё чаще производители совмещают тачскрин и дисплей в единый узел

Тачскрин – это сенсорное стекло, которое применяется для срабатывания аппарата на действия пользователя и реакцию на нажатия для вызова определённой функции. Современные производители всё чаще стали выпускать своеобразные «бутерброды», где применяется технология ламинирования, когда дисплей и тачскрин объединяются в монолитный узел, склеенный прозрачным герметиком. Это улучшает эксплуатационные характеристики, но требует полной замены детали при выходе из строя любого компонента.

Теперь вы по-новому посмотрите на свой смартфон или планшетный ПК. В любом случае делитесь в комментариях своим опытом разблокировки «уснувшего экрана» и задавайте вопросы автору статьи.

Можно трогать

Сегодня уже никого не удивить телефоном с сенсорным экраном. Ручное управление вошло в моду, но мало кто задумывается о том, что же происходит, когда вы прикасаетесь к дисплею. Я расскажу, как работают наиболее распространенные типы сенсорных экранов. Удобство и продуктивность работы с цифровой техникой зависят в первую очередь от используемых устройств ввода информации, при помощи которых человек управляет оборудованием и осуществляет загрузку данных. Наиболее массовым и универсальным инструментом является клавиатура, получившая в настоящее время повсеместное распространение. Однако использовать ее удобно далеко не всегда. Например, габариты мобильных телефонов не позволяют установить крупные клавиши, в результате чего скорость ввода информации снижается. Эта проблема решилась за счет применения сенсорных экранов. Всего за несколько лет они произвели на рынке настоящую революцию и стали внедряться повсюду — от мобильных телефонов и электронных книг до мониторов и принтеров.

Начало сенсорного бума

Покупая новый смартфон, на корпусе которого нет ни одной кнопки или джойстика, вы вряд ли задумываетесь о том, как будете им управлять. С точки зрения пользователя в этом нет ничего сложного: достаточно прикоснуться пальцем к иконке на экране, что приведет к выполнению какого-либо действия — открытию окна ввода телефонного номера, SMS или адресной книги. А между тем 20 лет назад о таких возможностях можно было только мечтать.

Сенсорный экран был изобретен в США во второй половине 60-х годов прошлого века, но до начала 90-х применялся преимущественно в медицинском и промышленном оборудовании для замены традиционных устройств ввода, использование которых сопряжено с трудностями при определенных условиях эксплуатации. По мере уменьшения размера компьютеров и появления КПК встал вопрос о совершенствовании их систем управления. В 1998 году появился первый наладонник с сенсорным экраном и системой ввода и распознавания рукописного текста Apple Newton MessagePad, а вскоре и коммуникаторы с тачскринами.

В 2006 году практически все крупные производители приступили к выпуску смартфонов с сенсорными экранами, а после появления Apple iPhone в 2007 году начался настоящий сенсорный бум — дисплеи такого типа появились в принтерах, электронных книгах, различных видах компьютеров и т. д. Что же происходит, когда вы дотрагиваетесь до сенсорного экрана, и каким образом устройство «узнает», куда именно вы нажали?

Принцип работы резистивного сенсорного экрана

За 40-летнюю историю развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно.

Экраны, выполненные по резистивной технологии, состоят из двух основных частей — гибкого верхнего и жесткого нижнего слоев. В качестве первого могут использоваться различные пластиковые или полиэфирные пленки, а второй изготавливается из стекла. На внутренние стороны обеих поверхностей нанесены слои гибкой мембраны и резистивного (обладающего электрическим сопротивлением) материала, проводящего электрический ток. Пространство между ними заполнено диэлектриком.

По краям каждого слоя установлены тонкие металлические пластинки — электроды. В заднем слое с резистивным материалом они расположены вертикально, а в переднем — горизонтально. В первом случае на них подается постоянное напряжение, и от одного электрода к другому протекает электрический ток. При этом возникает падение напряжения, пропорциональное длине участка экрана.

При касании сенсорного экрана передний слой прогибается и взаимодействует с задним, что позволяет контроллеру определить напряжение на нем и вычислить с его помощью координаты точки касания по горизонтали (оси X). Для уменьшения влияния сопротивления переднего резистивного слоя расположенные в нем электроды заземляются. Затем проделывается обратная операция: напряжение подается на электроды переднего слоя, а расположенные в заднем слое заземляются — так удается вычислить координату точки касания по вертикали (оси Y). Таков принцип работы четырехпроводного (названного так по количеству электродов) резистивного сенсорного экрана.

Помимо четырехпроводных встречаются также пяти- и восьмипроводные сенсорные экраны. Последние обладают аналогичным принципом работы, но более высокой точностью позиционирования.

Принцип работы и устройство пятипроводных резистивных сенсорных экранов несколько отличаются от описанного выше. Слой переднего резистивного покрытия в них заменен проводящим слоем и используется исключительно для считывания значения напряжения на заднем резистивном слое. В него встроено четыре электрода по углам экрана, пятый электрод является выводом переднего проводящего слоя. Изначально все четыре электрода заднего слоя находятся под напряжением, а на переднем слое оно равно нулю. Как только происходит касание такого сенсорного экрана, верхний и нижний слои соединяются в определенной точке, и контроллер улавливает изменение напряжения на переднем слое. Так он определяет, что до экрана дотронулись. Далее два электрода в заднем слое заземляются, вычисляется координата точки касания по оси X, а затем заземляются два других электрода, и вычисляется координата точки касания по оси Y.

Принцип работы емкостного сенсорного экрана

В основе принципа работы емкостных сенсорных экранов лежит свойство человеческого тела проводить электрический ток, что указывает на наличие электрической емкости. В простейшем случае такой экран состоит из прочной стеклянной подложки, на которую наносится слой резистивного материала. По его углам размещаются четыре электрода. Сверху резистивный материал укрывается токопроводяшей пленкой.

На все четыре электрода подается небольшое переменное напряжение. В момент прикосновения человека к экрану электрический заряд перетекает по коже на тело, при этом возникает электрический ток. Его значение пропорционально расстоянию от электрода (угла панели) до точки касания. Контроллер замеряет силу тока по всем четырем электродам и на основе этих значений вычисляет координаты точки касания.

Точность позиционирования емкостных экранов почти такая же, как у резистивных. При этом они пропускают больше света (до 90%), испускаемого отображающим устройством. А отсутствие подвергающихся деформации элементов делает их более надежными: емкостный экран выдерживает более 200 млн нажатий в одной точке и может работать при низких температурах (до -15 °С). Однако переднее проводящее покрытие, используемое для определения координат, чувствительно к влаге, механическим повреждениям и проводящим ток загрязнениям. Емкостные экраны срабатывают только при касании их проводящим предметом (рукой без перчатки или специальным стилусом). Выполненные по классической технологии экраны такого типа также не способны отслеживать одновременно несколько нажатий.

Такой возможностью обладает проекционно-емкостный сенсорный экран, который используется в телефонах iPhone и аналогичных устройствах. Он имеет более сложное строение по сравнению с обычными емкостными экранами. На подложку из стекла наносится два слоя электродов, разделенные диэлектриком и формирующие решетку (электроды в нижнем слое расположены вертикально, а в верхнем — горизонтально). Сетка электродов вместе с телом человека образует конденсатор. В месте касания пальцем происходит изменение его емкости, контроллер улавливает это изменение, определяет, на каком пересечении электродов оно произошло, и вычисляет по этим данным координату точки касания.

Такие экраны также имеют высокую прозрачность и способны работать при еще более низких температурах (до —40 °С). Проводящие электрический ток загрязнения влияют на них в меньшей степени, они реагируют на руку в перчатке. Высокая чувствительность позволяет использовать для защиты таких экранов толстый слой стекла (до 18 мм).

Резистивные сенсорные экраны

Принцип работы четырехпроводного резистивного сенсорного экрана

  1. До экрана дотрагиваются любым твердым предметом.
  2. Верхний резистивный слой прогибается и соприкасается с нижним.
  3. Контроллер определяет напряжение в точке касания на нижнем слое и вычисляет координату точки касания по оси X.
  4. Контроллер определяет напряжение в точке касания на верхнем слое и определяет координату точки касания по оси Y.

Принцип работы пятипроводного резистивного сенсорного экрана

  1. До экрана дотрагиваются любым твердым предметом.
  2. Верхний проводящий слой прогибается и соприкасается с нижним, что указывает на прикосновение к экрану.
  3. Два из четырех электродов нижнего слоя заземляются, контроллер опреде ляет напряжение в точке касания и вычисляет координату точки по оси X.
  4. Заземляются другие два электрода, контроллер определяет напряжение в точке касания и вычисляет координату точки по оси Y.
  • Низкая стоимость
  • Высокая стойкость к загрязнениям
  • Можно прикасаться любым твердым предметом
  • Низкая долговечность (1 млн нажатий в одной точке для четырехпроводного, 35 млн нажатий для пятипроводного) и вандало-устойчивость
  • Низкое светопропускание (не более 85%)
  • Не поддерживают Multitouch
  • Телефоны (например, Nokia 5800, НТС Touch Diamond), КПК, компьютеры (например, MSI Wind Top АЕ1900), промышленное и медицинское оборудование.

Емкостный сенсорный экран

  1. До экрана дотрагиваются проводящим ток предметом (пальцем, специальным стилусом).
  2. Ток перетекает с экрана на предмет.
  3. Контроллер измеряет силу тока по углам экрана и определяет координаты точки касания.
  • Высокая долговечность (до 200 млн нажатий), возможность работы при низких температурах (до -15 °С)
  • Высокое светопропускание (более 90%)
  • Реагируют на прикосновение только токопроводящего предмета (пальца, специального стилуса)
  • Восприимчивы к воздействию влаги, токопроводящих загрязнений
  • Не поддерживают Multitouch
  • Телефоны, тачпады (например, в плеере iRiver ВЗО), КПК, банкоматы, киоски.

Проекционно-емкостный сенсорный экран

  1. Экрана касаются или подносят к нему на близкое расстояние проводящий ток предмет, образующий вместе с ним конденсатор.
  2. В месте касания изменяется электрическая емкость.
  3. Контроллер регистрирует изменение и определяет, на каком пересечении электродов оно произошло. На основании этих данных вычисляются координаты точки касания.
  • Высокая долговечность (до 200 млн нажатий), возможность работы при низких температурах (до -40 °С)
  • Высокая вандалоустойчивость (экран можно покрыть слоем стекла толщиной до 18 мм)
  • Высокое светопропускание (более 90%)
  • Поддерживают Multitouch
  • Реагируют на прикосновение только токопроводящего предмета (пальца, специального стилуса)
  • Телефоны (например, iPhone), тачпады, экраны ноутбуков и компьютеров (например, HP TouchSmart tx2) электронные киоски, банкоматы, платежные терминалы.

Windows 7

В появилась возможность управления компью тером с помощью жестов «Прокрутка», «Вперед/назад», «Поворот» и «Масштабирование». Операционная система Windows 7 намного лучше адаптирована для работы с сенсорными дисплеями, чем все предыдущие версии. 06 этом свидетельствуют видоизмененный интерфейс и панель задач, в которой на месте прямоугольных кнопок, символизирующих запущенные программы, появились квадратные иконки — на них намного удобнее нажимать пальцем. Кроме того, появилась новая функция — списки переходов, позволяющие быстро найти недавно открывавшиеся файлы или часто запускаемые элементы. Для активации этой возможности достаточно перетащить иконку программы на Рабочий стол.

Впервые в операционную систему Windows добавлена опция распознавания сенсорных жестов, к которым привязано выполнение отдельных функций. Так, в Windows 7 появились сенсорная прокрутка и такая же, как, например, в Apple iPhone, возможность увеличения картинок или документов движением двух пальцев рук в разные стороны. Не обошлось и без движения, отвечающего за поворот изображения. Таким операциям, как копирование, удаление и вставка, также можно назначить отдельные жесты. Кнопки экранной клавиатуры подсвечиваются при касании, что облегчает ее использование на сенсорном экране. А возможность распознавания рукописного текста позволяет быстро вводить небольшие сообщения.