Из чего состоит дисплей смартфона?

Экраны смартфонов

Владимир Нимин

В описании смартфонов встречается множество незнакомых терминов. Этот материал впоследствии будет интегрирован в статьи про новинки смартфонов, которые выходят по итогам месяца. Текст будет дополняться. Пожалуйста, пишите в комментариях, описание и разъяснение каких понятий вы считаете важным добавить. Возможно, вы всё знаете, но слышали, как ваши знакомые не понимают, для чего, например, нужен акселерометр или за что отвечает какой-то параметр. Первая часть будет посвящена технологиям экранов.

Содержание

  1. Типы экранов
  2. Характеристики экранов
  3. Цветовые охваты
  4. Частота обновления экрана смартфона
  5. Заключение

Типы экранов

У экранов множество характеристик. Это технология производства, разрешение экрана, плотность точек, обозначаемая в ppi, также нередко встречаются различные виды цветовых охватов.

LCD – это жидкокристаллический экран, под «жидкими кристаллами» которого расположена подсветка. LCD экраны распространены, так как технология хороша знакома и дешева в производстве. И раз они полностью подсвечиваются снизу, то отлично показывают себя при работе под открытым солнцем. Но из-за того, что экрану требуется подсветка, у таких экранов может быть менее четкая цветопередача по сравнению с экранами, которым не нужна подсветка (OLED).

TFT LCD – Thin Film Transistor (тонкая пленка из транзисторов) – это версия LCD, у которой к каждому пикселю экрана прицеплены транзистор и конденсатор. Таким образом возрастает контрастность. Но такие экраны потребляют больше энергии, у них хуже углы обзора и хуже цветопередача. Если так всё плохо, то почему их используют? Они дешевле в производстве, чем обычные LCD.

IPS LCD – In-Plane Switching – это продвинутая версия TFT LCD. У IPS экранов прицеплено по два транзистора к каждому пикселю и более мощная подсветка. У таких экранов отличные углы обзора, хорошая цветопередача, но они потребляют больше энергии, чем OLED экраны. Но меньше, чем TFT LCD.

LTPS LCD – Low-Temperature PolySilicon – обычный LCD экран в качестве «жидких кристаллов» использует аморфный кремний. Аморфный кремний всем хорош, но накладывает ограничение на разрешение экрана и чересчур греется. Такой вариант хорош для экранов с плотностью пикселей менее 300 ppi, то есть разрешение Full HD и меньше.

Решить эти проблемы призван поликристаллический кремний, или LTPS. В таком виде кремния электроны бегают быстрее, что подразумевает лучшую скорость обновления экрана, а также позволяет использовать транзисторы меньшего размера. А это означает, что такой экран потребляет меньше энергии, меньше греется и поддерживает разрешение больше FullHD, так как благодаря транзисторам меньшего размера их можно уплотнять.

К слову, сам экран тоньше, чем обычный LCD. Но в производстве LTPS LCD стоит примерно на 15% дороже. Однако сейчас это самая перспективная технология, так как разрешение экранов смартфона постоянно увеличивается.

IGZO LCD – воспринимается как следующий этап развития LCD экранов после LTPS. В этой технологии можно делать транзисторы ещё меньше, то есть увеличивать их плотность и получать ещё большее разрешение экрана. И, конечно, чем транзисторы меньше, тем меньше энергии они потребляют, то есть IGZO LCD экраны ещё более экономичны. У Sharp, которая является главным популяризатором технологии, уже есть варианты экранов с разрешением 8К и плотностью пикселей 2700 ppi и более. Это позволяет точно работать с цветом и отзывчивостью. Sharp говорит, что её топовые экраны напоминают бумагу, если по ним писать стилусом.

Retina – маркетинговый термин от компании Apple. Retina экран подразумевает высокую плотность пикселей на дюйм – более 300 ppi.

Triluminos display – а это уже маркетинговый термин от Sony, которая считает, что изобрела лекарство от всех «болячек» LCD дисплеев. По сути, это LCD на квантовых точках (у Samsung есть похожая технология в телевизорах QLED). Упрощенным языком, взяли LCD панель и в неё вставили микроскопические (квантовые) частицы, значительно улучшающие цветопередачу и яркость

OLED, P-OLED, AMOLED, Super AMOLED

OLED – это organic light emitting diode, то есть органический светодиод. Таких диодов миллионы, и каждый горит своим цветом – зеленым, синим и красным. Загораются они в комбинации, образуя таким образом нужный цвет.

Главное отличие от LCD заключается в том, что каждый пиксель передает цвет, яркость и работает индивидуально, то есть может быть включен или выключен. Благодаря этому такие экраны обладают большей контрастностью. В достоинства OLED можно записать то, что у них отличная яркость и цветопередача и они гораздо более отзывчивые, чем LCD. К минусам относится то, что такие экраны менее долговечны (но, разумеется, за 3-5 лет использования смартфона вы с этим не столкнетесь). А также такие экраны жутко боятся воды. Обычно производители прикрывают их защитным стеклом, но всё же.

AMOLED – это Active Matrix Organic Light-Emitting Diode, то есть органический светодиод с активной матрицей. Грубо говоря, AMOLED экран можно назвать TFT OLED, так как идея такая же. К каждому пикселю прицеплены транзистор и конденсатор. AMOLED технология нужна для больших по размеру экранов. Например, 10 дюймов и больше. По сути, размер может быть любым.

PM-OLED – это Passive Matrix Organic Light-Emitting Diode – пассивная матрица отличается от активной тем, что подает напряжение сразу на целый ряд диодов, а не индивидуально на каждый. Это хуже для качества картинки, зато дешевле в производстве. Обычно используется для экранов размером до 3 дюймов. Соответственно, сейчас нарваться на технологию практически невозможно.

P-OLED – Plastic Organic Light-Emitting Diode – здесь речь идет о подложке экрана (не надо путать с PM-OLED). Первые OLED экраны использовали стеклянную подложку. Но со временем появилось желание делать более интересные по форме экраны, и тогда стекло заменили на пластик. Например, благодаря этому Samsung смогла делать свои изогнутые экраны. К слову, AMOLED экраны можно назвать P-OLED, но Samsung предпочитает свой термин AMOLED, так как у компании есть ещё свои know-how касательно яркости, цветопередачи и прочих параметров экрана. Но в целом обычный потребитель разницу между AMOLED и P-OLED не заметит.

Super AMOLED – это продвинутый AMOLED, как можно догадаться из названия. Продвинутость заключается в том, что Samsung интегрировали в экран сенсорный слой. Обычно сенсорный слой накладывается поверх экрана, а тут внутри. Благодаря этому улучшилось энергопотребление, а также такие экраны лучше ведут себя на солнце (повысилась читаемость). Обычно Super AMOLED встречается только в телефонах верхних ценовых сегментов, так как достаточно дорог в производстве.

Dynamic AMOLED – самая последняя версия экранов от Samsung. Если коротко, то это Super AMOLED с поддержкой HDR10+. Также такие экраны бережнее относятся к глазам, так как испускают меньше раздражающего синего цвета.

Характеристики экранов

PPI – pixel per inch – плотность пикселей на дюйм. Чем выше это число, тем больше пикселей в одном дюйме, и, таким образом, выше качество картинки. Обычно число PPI напрямую связано с разрешением экрана смартфона и его размером. Чем выше разрешение, тем больше PPI. Но можно нарваться и на большой экран с низким разрешением и, соответственно, низким PPI, тогда при близком рассмотрении картинка будет казаться зернистой. Считается, что человеческий глаз может увидеть отдельные пиксели при 350 ppi, если плотность выше, то уже неразличимо.

Разрешение экрана – по сути, это количество пикселей, которое может уместиться на экране. Чем больше значение, тем больше информации может уместиться. Когда разрешение очень большое, например, 4К, то производители, чтобы не мельчить, просто используют иконки большего размера. Но благодаря большему количеству пикселей изображение смотрится более чётким.

Ниже – основные типы разрешений. Хочу отметить, что максимальные рекомендуемые размеры экранов приведены для смартфонов, с которыми пользователи обычно работают, держа их близко к глазам. Для планшетов и мониторов эти примеры не подходят, так как эти экраны обычно находятся на значительном расстоянии.

  • 720p – 1280 х 720 – посредственные экраны с низким ppi. Кажутся зернистыми всегда.
  • 1080p – 1920 x 1080 – хорошее разрешение для современного смартфона. При размере 6 дюймов у экрана 367 ppi и его пиксели неразличимы. Однако для экрана в 10 дюймов разрешения Full HD уже недостаточно. Плотность пикселей будет 220 ppi, то есть картинка будет зернистой. Full HD отлично подходит для экранов размером до 6 дюймов включительно
  • 2К – 2560 x 1440 – отличное разрешение для экранов размером до 8 дюймов (367 ppi).
  • 4К Ultra HD – 3840 x 2160 – используется в топовых смартфонах. Хорошо смотрится на экранах размером до 12 дюймов.
  • True 4K – 4096 x 2160 – такое разрешение бывает в мониторах и телевизорах. В телефонах такого нет.

Цветовые охваты

Существует несколько основных цветовых охватов, или цветовых пространств. Соответственно, чем больше цветовой охват, тем лучше цветопередача.

sRGB – самый распространенный формат, который встречается в смартфонах. Он покрывает 33,3% от всех видимых цветов.

DCI-P3 – Digital Cinema Initiatives (DCI) цветовое пространство, используемое в цифровых кинотеатрах. Охватывает большую часть спектра естественного происхождения. Это стандарт ассоциации кинопроизводителей. Они считают, что в этом охвате лучше всего смотреть фильмы. Люди часто смотрят кино на экране смартфонов, поэтому этот цветовой охват пришёл и сюда. Этот охват на 26% больше, чем у sRGB, и покрывает 41,8% всех видимых цветов.

BT.2020 – этот цветовой охват любит использовать Sony в своих смартфонах и телевизорах. Он покрывает 57,3% видимых цветов и на 72% шире, чем sRGB

Wide color Gamut – такой охват использует Apple в своих iPhone. Он покрывает 77,6% видимого цветового спектра.

Частота обновления экрана смартфона

Частота обновления экрана – это то, с какой скоростью может меняться картинка на экране в секунду. Обычное значение – 60 Гц. Это значит, что за секунду картинка отрисуется 60 раз. В смартфонах можно встретить значение 90 Гц, а Apple, Sharp делают 120 Гц. У Xiaomi в смартфоне Black Shark 2 частота обновления экрана 240 Гц. Благодаря высокой частоте обновления, анимация на экране выглядит плавнее. На видео ниже – экран 60 Гц и 120 Гц, видео снято с частотой 240 кадров в секунду.

Читайте также  Что такое wi Fi direct в смартфоне?

Заключение

Кажется, охватил основные характеристики экранов. В комментариях пишите, что я забыл, что надо добавить. Какие параметры экранов вызывают у вас вопросы.

Из чего состоит дисплей смартфона?

СмартПульс — держите руку на пульсе высоких технологий! Новости, статьи, обзоры мобильных устройств, компьютеров, комплектующих, радиолюбительских конструкций

Главная — Информация к размышлению (статьи) — Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея «жертвенного» телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них — жидкокристаллического ( LCD — liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается » T hin- F ilm T ransistor» — тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве «жертвенного» телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи ( TFT LCD , и их модификации — TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки). Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из «активных» составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип — ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже «сходят с арены».
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D -touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое «решение с одним стеклом», OGS — O ne G lass S olution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В «обычном» дисплее (с воздушным промежутком) таких поверхностей — три. Это — границы переходов между средами с разным коэффициентом преломления света: «воздух-стекло», затем — «стекло-воздух», и, наконец, снова «воздух-стекло». Наиболее сильные отражения — от первой и последней границ.

В варианте же с OGS отражающая поверхность — только одна (внешняя), «воздух-стекло».

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который «всплывает», если дисплей разбить. Если в «обычном» дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые — не верно. Вероятность того, что разбилась только внешняя поверхность — довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Теперь переходим к следующей части — собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев — изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка «прозрачности» осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой — поляризационную пленку с «фиксированным» направлением поляризации.

Схематично структура и работа матрицы в двух состояниях («есть свет» и «нет света») изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен — должен быть черный экран.

На практике такое «идеальное» расположение векторов поляризации создать невозможно; причем как из-за «неидеальности» жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500. 1000, на остальных — ниже 500.

Остается еще к этому добавить проблемы, возникающие при прохождении света под углом (когда пользователь смотрит не перпендикулярно), и в итоге можем получить не только паразитную засветку, но и другие цвето-яркостные искажения.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MV A, PVA и т.п.).

Теперь переходим к самому «дну» дисплея — лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, «плохого» спектра излучения, или же требуют «неподходящего» типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто «плоские» источники света, а «точечная» светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя «вскрытие» дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем «срезе» угла:

Пояснения к снимку. В центре кадра — разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу — покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху — срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной «световодной» пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет «пупырышков», создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Далее сверху на этот «бутерброд» укладывают еще один лист с особыми свойствами.

Его условно можно назвать «лист с полупрозрачным зеркалом и двойным лучепреломлением». Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа — предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена «простенькая» лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается «больших» экранов, то их устройство — аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL , Cold Cathode Fluorescent Lamp ) .

Структура дисплеев AMOLED

Теперь — несколько слов об устройстве нового и прогрессивного типа дисплеев — AMOLED (Active Matrix Organic Light-Emitting Dio de ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются «бесконечная» контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками — уменьшенный срок «жизни» синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

Читайте также  Как узнать есть ли nfc в смартфоне?

Кроме дисплеев AMOLED , постепенно пробивают себе дорогу в жизнь другие дисплеи на основе светодиодов — micro-LED. Они отличаются от AMOLED тем, что светодиоды в них — не на основе органических полупроводников, а на основе настоящих светодиодов, только микроскопических.

Технология производства таких дисплеев — ещё более дорогая.

И, наконец, надо сказать, что дисплеи электронных книг не относятся ни к одному из перечисленных типов, они рассмотрены в отдельной статье.

Ваш Доктор.
12 мая 2017 г.

Другие статьи цикла «Как устроен смартфон» :

Порекомендуйте эту страницу друзьям и одноклассникам

В комментариях запрещены, как обычно, флуд, флейм и оффтопик.
Также запрещено нарушать общепринятые нормы и правила поведения, в том числе размещать экстремистские призывы, оскорбления, клевету, нецензурные выражения, пропагандировать или одобрять противозаконные действия. Соблюдение законов — в Ваших же интересах!

Что ВНУТРИ ЭКРАНА смартфона?

Автор Вячеслав Питель · 14:48 14.01.2019

Здравствуйте, уважаемые читатели сайта Uspei.com. Это экран смартфона под микроскопом…а это не палец. Это специальный инструмент похожий на карандаш, а точнее его острейший кончик. толщиной меньше миллиметра. Просто что бы вы понимали на сколько крохотны вот эти точки. Давайте препарируем экран смартфона и разберемся, что это за точки, как из них получается красочная и сочная картинка, а также заглянем прямо под работающий дисплей?!

Почему так много разновидностей дисплеев?

Первое, что нужно знать перед тем как углубляться в тему дисплеев – почему их расплодилось так много. Листая характеристики на сайтах или рассматривая карточку на витрине, можно встретить самые разные названия матриц, начиная от привычных IPS и AMOLED, заканчивая PLS, LTPS, POLED и еще маркетинговых Retina и иже с ними. Но это не значит, что все они прям кардинально отличаются друг от друга, нет.

Дело в том, что производители постоянно что то изобретают и улучшают свои экраны. Не всегда изменения существенные, но законы рынка обязывают все это дело запатентовать, придумать новое название и продвигать под видом – «It’s revolution Johnny».

На самом деле все проще. Экраны смартфонов можно поделить всего на два типа: LCD и OLED. Первый сейчас самый популярный. Если я буду ходить по магазину и рандомно указывать пальцем на экраны, то где то в 70% случаев попаду на LCD. К нему и относится PLS, LTPS и конечно всеми любимый IPS.

Как работают LCD-экраны смартфонов и как выглядят внутри?

Итак, ближе к делу. Как работают LCD экраны смартфонов и как выглядят внутри? Если приподнять все верхние слои дисплея, то в самом низу мы увидим яркий свет – это подсветка, отсюда начинается создание картинки. Причем кажется, что светится все основание, но это иллюзия.

Поток лучей создается всего десятком диодов, плюс-минус, вот они, крошечные. А дальше свет попадает на отражающую подложку, которая распределяет его по всей площади.

Вот тут видно, как сильно проседает яркость экрана, если оторвать это зеркало, в кавычках. Но картинка все еще видна, так что смотрим, что будет если и дальше снимать слои у работающего экрана прямо «по живому». Долго он конечно не продержался.

Следом идут несколько рассеивающих свет слоев, и сразу после удаления первого из них на экране окончательно теряется яркость от диодов. Видны только отголоски картинки в самом низу, около них. Но что же выводит эту самую картинку? Главный элемент в этом бутерброде находится сверху, над всеми фильтрами – слой жидких кристаллов.

Вот как он выглядят под микроскопом. Зеленые, синие и красные штрихи – это субпиксели. Которые за счет фильтров пропускают только один цвет спектра. Вместе три такие полоски составляют тот самый пиксель, маленькую цветную точку на вашем экране. А схема построения именуется как RGB, с английского — красный, зеленый и синий.

Если посмотреть еще глубже, в сам субпиксель, то мы увидим такую схему.

Главную роль тут исполняют ЖК-молекулы, которые меняют свое построение под действием напряжения и пропускают больше или меньше света. Миллионы молекул постоянно движутся и за счет этого меняется яркость пикселей. Одни становятся светлее, другие – темнее, один выдает больше зеленого цвета, второй – красного.

Все это происходит каждую миллисекунду. Вот так и строится картинка, которую вы видите перед собой. А экраны называются LCD или Liquid crystal display – жидкокристаллические дисплеи.

Как работают OLED-экраны смартфонов и как выглядят внутри?

Хорошо, с первым, самым популярным типом разобрались. Но самые внимательные из вас наверно заметили, что в начале видео пиксельная сетка была совсем другая. И светилась странно – были у нее какие-то черные островки.

Это был экран второго типа, на основе органических светодиодов – OLED. К нему же относится AMOLED, SuperAMOLED, POLED и остальные производные от этого типа матрицы.

В отличии от LCD, где свет создается диодами подсветки, тут он излучается самими субпикселями, теми разноцветными точками. Если бы был такой жанр как фильм ужасов для смартфонов, то, вероятно, это видео претендовало бы на Оскар. Сейчас вы видите, как леской вскрывается битый экран Айфона 10, точнее дисплей отделяется от защитного стекла. Страшное зрелище. Но это нужно видеть, потому что сразу ясны первые отличия OLED от LCD.

Вот он, сам дисплей…Все! Вот этот, не побоюсь этого слова – листок, и есть вся матрица. Разницу долго искать не нужно. Как видите – тут нет диодов подсветки и множества слоев. Дисплей тоньше и при этом довольно неплохо гнется. Более того, не смотря на все издевательства, вот в таком потрепанном виде его можно подключить обратно и он будет как-никак работать. Тем интереснее заглянуть внутрь и понять, как строиться картинка в такой матрице.

Органический светодиод состоит из нескольких слоев полимеров, которые под действием напряжения способны излучать свет. Это если очень упрощенно. А дальше схема примерно та же. Пропуск только одного цвета через фильтры и создание одной точки изображения из субпикселей. И вот что это дает.

В отличии от LCD, где нужно постоянно подавать напряжение даже на темные пиксели, в OLED их можно просто выключить. Вот откуда эти черные дыры под микроскопом. Пиксели просто не горят. А значит не потребляют энергию.

Также за счет этого они выдают картинку с настоящим черным цветом и высокой контрастностью. Даже в таком приближении посмотрите какой четкий переход от цветного яркого поля в темное.

Вот почему когда я тестирую автономность смартфонов с IPS и Super Amoled, первый может продержаться 7 часов, а второй – все 11. Одинаковая батарея, диагональ, железо, яркость примерно – а время разное, потому что экран экономичнее.

И по этой же причине когда Айфоны перешли на OLED, все возмущались – «где же черная тема, блин?» И вроде бы до сих пор возмущаются, потому что и в новых десятках нет ее…поправьте, если ошибаюсь. Это, кстати, в тему «It’s revolution Johnny». Хотя это уже мысли для отдельного видео.

Сейчас же, в истории с дисплеями, точку ставить не буду. Вдруг хотите узнать подробнее об особенностях какой-то конкретной матрицы и разобраться что ей такого прикрутили, из за чего она получила особое название, то дайте знать в комментариях. А пока гляньте как работают мобильные камеры, с этой темой мы уже разобрались. До скорого!

Устройство дисплея смартфона

Экран смартфона является не только неотъемлемым элементом конструкции мобильного устройства, но и одним из наиболее важных его компонентов. Уже давно прошли времена, когда для того чтобы охарактеризовать телефон как крутой, достаточно было его цветного дисплея. На сегодняшний день огромное разнообразие экранов удовлетворяет абсолютно всех, даже исключительно требовательных пользователей. Обратная сторона медали изобилия и доступности – мудрёные технологии и термины едва ли доступны простому обывателю. Более того, при поверхностном осмотре может показаться, что все экраны примерно одинаковые и различаются только по размеру. При более тщательном изучении становиться ясно, что устройство дисплея смартфона, включая аппараты Хайскрин, включает такие важные факторы, как качество цветопередачи, комфортность использования при ярком освещении, углы обзора, быстрота реакции сенсора на прикосновение и многое другое.

КОМПОНЕНТЫ ДИСПЛЕЯ СМАРТФОНА

Глаза человека – это один из главнейших проводников информации для мозга, поэтому совершенно естественно, что экран смартфона является важнейшей частью устройства, т.к. с его помощью осуществляется не только управление, но и считывание информации.

Рассвет развития электронных технологий начинался с использования для экранов TV и ПК принципа электронно-лучевой трубки, семидесятые года ознаменованы появлением первого жидкокристаллического монохромного экрана, технология производства которого при появлении первых мобильных телефонов благополучно перекочевала в данную индустрию. Несколько позже применение технологии производства экранов на основе органических светодиодов ознаменовало появление сенсорных и гибких дисплеев.

Практически любое устройство дисплея смартфона включает такие компоненты:

  • Слой жидких кристаллов, пропускающих световые лучи;
  • Матрица, отвечающая за формирование картинки;
  • Светофильтры, предназначенные для получения цветной картинки;
  • Источник света

О РАЗРЕШЕНИИ, ДИАГОНАЛИ, ПЛОТНОСТИ ПИКСЕЛЕЙ, ТИПАХ ТАЧСКРИНА И ВИДАХ ДИСПЛЕЯ СМАРТФОНА

Разрешение и диагональ

Параметры чрезвычайно значимые для получения качественной и четкой картинки. Важно, чтобы соотношение величины экрана и разрешения было адекватным, иначе можно получить откровенно зернистое некачественное изображение. Самые распространенные варианты на сегодня – это 540х960 рх/4,8″ в дешёвых моделях, 720х1280 рх/5-5,5″ (HD-картинка с хорошей детализацией), 1080х1920 рх/от 5″ и выше (Full HD-супер изображение отличного качества) в более функциональных телефонах.

Плотность пикселей

Данный показатель влияет на резкость экрана, т.е. представляет собой показатель комфортной эксплуатации для интернет-серфинг, чтения книг и пр. Следует понимать, что на большом дисплее с низким разрешением плотность пикселей будет мала. Для того, чтобы избежать видимой погрешности картинки при эксплуатации лучше отдать свое предпочтение диапазону 200-300 ppi.

Читайте также  Уровень sar что это такое в смартфоне?

Тип тачскрина

Сегодня самыми известными являются резистивные и емкостные дисплеи.

1. Резистивный тип.

Представляет собой двухслойное покрытие с нанесением прозрачных дорожек проводников. Определение координат касания выполняется в результате изменения сопротивления тока в точке прикосновения. Такой тип сейчас почти не используется. Плюс таких экранов в небольшой цене и возможности нажатия точечно любым предметом, минус в недолговечности, подверженности к повреждениям, постепенное уменьшение яркости.

2. Емкостный тип.

Представляет собой однослойное покрытие с нанесением на внутреннюю сторону токопроводящей прослойки, также, может быть представлен в виде стекла и сенсорной пленочки. Отклик сенсора осуществляется за счет определения координат утечки тока от точки прикосновения. Преимущество таких экранов в повышенной яркости и сочности цветов, устойчивости к повреждениям, недостатком является непростое производство и возможность управления только при помощи пальцев. Устойчивость к повреждениям повышают путем использования защитных стекол, загрязнения предотвращают при помощи нанесения олеофобного напыления. Ёмкостной тип используется в подавляющем большинстве случаев, включая марку смартфонов Хайскрин

В создании дисплеев чаще всего используют технологии жидкокристаллических матриц – LCD и органических светодиодов – OLED. Более востребован LCD, подразделяемый на TN (отличается низкой стоимостью и быстрым откликом с плохими углами обзора и цветопередачей), IPS (отличная цветопередача, отличные углы обзора, повышенная контрастность и сочность картинки) и PLS (модернизированная версия TN). Что касается OLED и AMOLED, эти дисплеи не нуждаются в подсветке по периметру, как LCD. Их преимущество в сочной цветовой гамме, яркости и отличных углах обзора, недостаток – хрупкость и высокое энергопотребление.

НЕКОТОРЫЕ КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ЭКРАНОВ СМАРТФОНОВ

Конечно, устройство дисплея смартфона на технологиях формирования картинки не ограничивается. Так, не менее важным в образовании экрана является наличие воздушной прослойки между сенсором и дисплеем, у данной технологии есть название – OGS, что значит объединение сенсора и матрицы в единое целое. Ее использование значительно улучшило качественные характеристики изображения и положительным образом отразилось на уменьшении толщины смартфона. Вместе с тем есть у технологии и неприятный минус – при повреждении стекла поменять его отдельно вряд ли удастся. Тем не менее, достоинства OGS привели к тому, что другие экраны встретить можно только в очень дешевых моделях. На этом производители современных смартфонов не остановились – в последние несколько лет просматривается четкая тенденция на еще большее уменьшение толщины экрана, изменение формы преимущественно на изгиб, причем не только стекла и экрана, но и мобильного устройства в целом.

ЧТО МЕНЯТЬ ПРИ ПОВРЕЖДЕНИИ — СТЕКЛО ИЛИ МОДУЛЬ?

Для объективной оценки необходимости замены поврежденного того или иного элемента необходимо подробнее остановиться на следующих определениях:

Дисплей. Элемент мобильного устройства, который выводит на экран смартфона графические (изображение) и текстовые данные.

Тачскрин или сенсор. Внешний слой дисплея, реагирующий на прикосновения, показывая затребованную информацию.

Дисплейный модуль. Представляет собой дисплей и сенсор, склеенные специальным клеем. Если судить по потребительскому спросу, один из важнейших критериев, по которому пользователь выбирает для себя смартфон – это размер и качественные характеристики экрана, что автоматически делает его самым уязвимым местом телефона, несмотря на то, что разработчики применяют для их создания самые качественные материалы.

Очень часто пользователи сталкиваются с такими проблемами, как механические повреждения экрана – это могут быть падения, трещины, удары, повреждения от ношения в сумке или кармане от ключей и других твердых и острых предметов. Первый признак того, что дисплей не исправен, сенсор перестает реагировать на прикосновения. И здесь кроется самая главная проблема: зачастую замена сенсора или защитного стекла или в принципе невозможна, так как представляет собой единый с дисплеем модуль или же попросту не рентабельна. Поэтому в большинстве случаев специалисты предложат заменить дисплейный модуль как единое целое. Этот фактор является и рекомендацией к бережному отношению к смартфону, с крайне желательным использованием аксессуаров – плёнок, стёкол.

Из чего состоит дисплей iphone [и других смартфонов в том числе]

#iphone #iphonedisplay. Вопреки разговорам о том, что дисплей iphone — это единый модуль, в этом посте я покажу вам, что это не так. Более того, в следующих постах, я развею миф о том, что при замене дисплея iphone 6 или 6 plus (а также 5й и 4й версии) и на других смартфонах необходимо менять весь экранный модуль целиком. Если вам все это неинтересно и вы просто хотите заменить защитное стекло или заменить дисплей вашего iphone 6 (4,5) звоните в наш сервисный центр. Если напротив — прошу читать далее.

Для начала, хочу отметить, что дисплеи iphone отличаются по конструкции и технологии формирования изображения от большинства смартфонов, но не кардинально. Принципы, которые работают во всех ЖК-дисплеях, такие же:

  • Матрица , состоящая из ЖК-кристаллов подсвечивается при помощи источника света (подсветки)
  • Изображение от матрицы проходит через поляризационный фильтр, в результате чего получается изображение, которое воспринимается человеческим зрением.

Если есть желание, прочитайте подробнее о том, из чего состоит экран ноутбука и как происходит его замена, здесь. В телефонных дисплеях тоже самое, только гораздо меньшего размера (размер пикселя — меньше, матрица и подсветка — тоньше).

Теперь я опишу составные части дисплея в порядки их нахождения от поверхности (там где пользователь касается экрана).

Модуль дисплея iphone состоит из следующих элементов:

1. Защитное стекло iphone.

Именно по нему вы водите пальцем когда пользуетесь iphon’ом. Оно служит для того, чтобы сенсорная панель и матрица не изнашивались и не могли повредиться в результате удара или падения. Ведь лучше разбить стекло чем более дорогие элементы дисплея.

Стекло в iphone, начиная (если я не ошибаюсь) с 4й версии имеет олеофобное покрытие (лат. олео — масло/жир и фобос — боязнь). Переводя на русский — покрытие на котором не задерживается жир. Иногда говорят, что олеофобное покрытие «отталкивает» жир, но буквально это не совсем так. Жир никуда не улетает от такого покрытия, а просто не въедается и его можно легко удалить обычной безворсовой салфеткой.

2. Тонкий слой прозрачного клея.

В большинстве сенсорных телефонов внешнее стекло (или сенсорный экран) клеятся не к корпусу устройства, а непосредственно к матрице (экрану). Это позволяет убрать воздушный зазор между сенсорной панелью и матрицей, плюс, уменьшает толщину устройства в целом.

3. Сенсорное стекло (сенсорная панель, она же тачскрин, она же сенсор)

Именно по средствам сенсорной панели, процессор телефона получает информацию о том, в каком месте вы прикоснулись к стеклу, затем через видеоподсистему выполняемые действия отображаются на матрице.

4. Поляризационная пленка (поляризационный фильтр)

Для чего нужен- видно из картинки. Описывать принцип его действия не буду, слишком много.

5. ЖК-дисплей (матрица)

О том, что такое матрица — по ссылке выше. Это 2 пластины между которыми находятся жидкие кристаллы. Под действием электрического тока, кристаллы поворачиваются под определенным углом и пропускают излучение от подсветки.

В ноутбуках и многих других устройствах матрица представляет собой устройство в корпусе которого объединена и подсветка и кристаллы и поляризационный фильтр. В iphone — это все отдельные части, которые крепятся друг у другу.

Технология, по которой изготавливается ЖК дисплеи iphone использует технологию IPS. С той лишь разницей, что это не стандартная IPS, а улучшенная и в apple ей дали название Retina. Многие производители ЖК-экранов развивают свои технологии на основе IPS и называют их по-своему, добавляя некоторые нововведения.

6. Подсветка.

Источник света. Служит для того чтобы изображение, выводимое ЖК-экраном было видно человеческому глазу т.к. сами по себе ЖК кристаллы не излучают света.

7. Рамка дисплея

Упомяну про эту часть в самом конце, т.к. она полностью обрамляет защитное стекло и весь дисплей. Ниже представлена рамка iphone 5 черного цвета.

Как вы видите, дисплей iphone весьма непрост. И далеко не монолит как представляют вам на многих сайтах. При наличии навыков и оборудования все эти части можно заменить по отдельности, что гораздо дешевле для клиента и выгоднее для сервисного центра.

Например, модуль в сборе для iphone 6 plus стоит в районе 20 тыс. руб. (на момент написания статьи) без учета стоимости работ 🙂 Хотя, при падении телефона разбивается, как правило, только защитное стекло и его замена на iphone 6 plus обойдется в несколько раз дешевле чем замена всего дисплея.

Аналогичная ситуация, например, с samsung galaxy S3, s4 и т.д. где стоимость модуля достигает 10 тыс руб., и смотря на курс доллара, мы понимаем, что ситуация вряд ли изменится.

О том как происходит замена дисплея на iphone по частям я напишу в следующий раз. И хотя, на youtube и в интернете уже множество видео и постов на эту тему, с выходом дорогостоящих смартфонов с дисплеями большой диагонали она становится все актуальнее.

Со смартфонами старых моделей все не так плохо, взгляните, хотя бы, на цены для дисплейных модулей «стареньких» iphone:

  • Дисплей для iphone 4g с доставкой из Белгорода
  • Дисплей для iphone 5s с доставкой из Белгорода
  • Дисплей для iphone 6 (хоть и новый, но цены чуть упали) также в Белгороде

С другой стороны, модуль дисплея пусть и дороже, но на него вы получаете полноценную гарантию как на отдельное устройство и сможете заменить самостоятельно в домашних условиях избежав похода в сервисный центр.

Опять же, в нашем сервисном центре при замене защитного стекла на iphone, вы получаете такую же гарантию как и при замене всего дисплея, а платите в РАЗЫ меньше.